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TWO-STEP RUNGE-KUTTA METHODS 
AND HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 

R. A. RENAUT 

ABSTRACT. The purpose of this study is the design of efficient methods for 
the solution of an ordinary differential system of equations arising from the 
semidiscretization of a hyperbolic partial differential equation. Jameson re- 
cently introduced the use of one-step Runge-Kutta methods for the numerical 
solution of the Euler equations. Improvements in efficiency up to 80% may be 
achieved by using two-step Runge-Kutta methods instead of the classical one- 
step methods. These two-step Runge-Kutta methods were first introduced by 
Byrne and Lambert in 1966. They are designed to have the same number of 
function evaluations as the equivalent one-step schemes, and thus they are po- 
tentially more efficient. By solving a nonlinear programming problem, which is 
specified by stability requirements, optimal two-step schemes are designed. The 
optimization technique is applicable for stability regions of any shape. 

0. INTRODUCTION 

In this paper we consider a class of pseudo-Runge-Kutta methods for the 
solution of an ordinary differential system of equations 

(0.1) y =f(y) 

which arises from the semidiscretization of a hyperbolic partial differential equa- 
tion. In 1982, Jameson [7] initiated interest in the use of one-step Runge-Kutta 
methods for the numerical solution of the Euler equations. He applied the 
van der Houwen [4] optimal schemes in codes for the solution of the Euler 
equations by central differences. These schemes are optimal because they have 
regions of stability enclosing a maximal interval on the imaginary axis, as is 
required when central differences are used for the semidiscretization. Here we 
demonstrate that greater efficiency is achieved by using two- rather than one- 
step Runge-Kutta formulae. These Runge-Kutta methods were first considered 
by Byrne and Lambert [1] in 1966. 

We define an explicit two-step m-stage Runge-Kutta method as 
m 

(0.2) y,,, = (1 -I3)y, + ly,-, + h E(viff(yn- ) + Wi-wf(y)), 
i= 1 
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where 

i Y m i=1, 

Y {m + h E=1 ijaf(yi) i>1. 

The vector y, represents a numerical approximation to the analytical solution 
y(t) at t = tn, and h is the step length, tn+1 = tn + h. Observe that the 
schemes considered by Byrne and Lambert [1] have ,L = 0. It is clear that 
the form of the yn and y'1 means that no more function evaluations are 
required for two steps than for the equivalent one-step formula. This is because 
the function evaluations at the time tn-1 are the same as those taken at time 
tn in the previous step. Therefore, provided that information is stored from 
step to step, the two-step schemes are potentially as efficient as the one-step 
methods when working with a constant stepsize. Furthermore, the number of 
degrees of freedom of the two-step method is I m(m + 3) + 1 as compared to 
2 m(m + 1) for the one-step method. Thus an m-stage two-step scheme has the 
same flexibility as an (m + 1)-stage one-step scheme. For a large number of 
stages, the difference is negligible but typically one only uses a few stages, and 
then the extra flexibility is useful. Here we take advantage of this flexibility 
to design schemes with optimal stability regions with respect to given domains 
in the complex plane. For our analysis we will consider the scalar problem 
Y/ = f(y), where y is scalar. The results immediately extend to the case of 
systems. 

In the next section we develop the order conditions for the two-step formu- 
lae using Butcher series. For a given number of stages, higher order is attain- 
able than with one-step schemes. Byrne and Lambert [1] presented a two-stage 
scheme of order three and a three-stage scheme of order four. With four stages 
no improvement is possible and order four is attained. 

In order to design efficient schemes for hyperbolic problems, the stability 
properties of these schemes must be studied. This is done in ?2, where a review 
of results about maximal stability intervals for Runge-Kutta methods is also 
presented. We develop criteria for the stability of the two-step schemes and use 
these to prove that the maximal interval of stability on the imaginary axis for 
a two-step two-stage order-three scheme is 1.0. In other cases, optimal schemes 
are found numerically. The strategy to determine optimal schemes is described 
in the last section. Further explanation is given by Renaut [14]. 

The results show that generally two-step schemes are more efficient than their 
one-step counterparts. To enable reasonable comparison, we present scaled re- 
sults that take into account the number of function evaluations being performed. 
With three stages and order three, an improvement of 64% is predicted using 
two-step schemes for a centrally differenced hyperbolic problem. The optimiza- 
tion procedure is applied not only for intervals of stability on the imaginary axis 
but also for stability within regions in the complex left-half plane. This is of 
interest when the hyperbolic equation is discretized with forward or backward 



TWO-STEP RUNGE-KUTTA METHODS 565 

differences instead of central differences. Improvement in efficiency up to 80% 
is predicted for the cases considered here. 

Observe that this optimization technique may be applied for any regions in 
the complex plane and can therefore be used to determine optimal schemes for 
any semidiscretizations. 

1. ORDER CONDITIONS AND BUTCHER SERIES 

First we review the conditions for the convergence of numerical solutions of 
(0.2). As in Henrici [3], the method (0.2) is said to be convergent only if, for all 
Lipschitz functions f, the solution y(t) of the initial value problem y' =f(y), 
y(0) = y0, defined on the interval t E [0, T) satisfies 

lim An =Y~ 
n w oo 
nh=t 

Now the multistage method (0.2) is associated with a nonlinear difference op- 
erator Yn+ - Z (Yn, Yn - I ) where Z denotes the operators on the right-hand 
side of equation (0.2). The method is said to be accurate of order p, at t = tn 

if p is the largest integer such that 

(I.v l) Y(tn+l) )-Z(Y(tn) 5 Y(tn-1)) = 0(hp+ ), IhI << 1. 

If p > 1, the method is consistent. Further, the method is zero-stable if no 
root of the polynomial p(a), defined by 

p(a) = a - (1 - 3)a - A , 

has modulus greater than one, and if a root has modulus one it must be simple. 
Then the method is convergent if and only if it is zero-stable and consistent [3]. 
Therefore, it is convergent only if -1 < fl < 1 since p(a) has roots a = 1 
and a2 = -13. Furthermore, if we expand y(tn+l) and y(tn-1) about y(tn), 
using Taylor's theorem, we see that 

lim[y(tn+l )- Z(Y(tn ) 5 Y(tn-1 ))] 

=h [(l+II)Y (tn)-L(Vi+ Wdf(Yn) +O(h ). 

Thus consistency requires 
m 

1 +1) = Z(Vi + Wi) 
i=1 

and convergence 
m 

j:(Vi + Wi) :# ? 
i=1 

In general, order of accuracy greater than one is desired. Order conditions 
can be derived in a variety of ways. The tensor notation used by Henrici [3] 
was applied by Renaut [14] to derive order conditions up to order four. Here 
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we use Butcher series and follow the approach of Hairer and Wanner [2] to 
get a formula from which order conditions up to any order of accuracy can be 
derived. Jackiewicz, Renaut, and Feldstein [6] also used Butcher series to get 
the order conditions for implicit two-step methods but without the use of the 
composition theorem of Hairer and Wanner [2]. To apply the theory of Hairer 
and Wanner [2], we need to write the method (0.2) in the matrix-vector form 

y = AM-yO + hA()#f(y). 

Here A(?) and A(1) are fixed (2m+2) x (2m+2) matrices, and y, yo, and f(y) 
are (2m+2)-dimensional vectors, where f acts on the vector y componentwise. 
In this case, 

m mn-i 

0 ... 0 1 0 ...0 0 0 

0...010...0 0 0 

O 0 ...010...0 0 0 
0 ...000... 0 1 0 

0 ...000 . 0 1 0 
O ... 0 ,6 0 ... 0 1 0- 

and 
m 

0 0 ... 0 0 

A 
0 0... 0 0 

AM0 ... 0 0 0 ... 0 0 
0 ...0 0 0' 

M ~~~~A 
0 ... 0 0 0 

VT 0 W 
T 

0 

where 
' ... .. O 

a2l 0 ... O 

A aml *7. am,i-i [3 

vT =(v, v2, ...,vm)T, and WT= (W1, W2, ...5Wm)T Also, yO is defined 
by T 

YO= (Yn-1 ..Yn-1 5 Yn ..Yn) 
m + 1 times m + 1 times 

1 2 m 1 m T and y-= (Yn-1 5 , Y .n., 5 5 , yn , Yn , ..., 5Yn Yn+1) . These definitions of 

AM A('), yo, and y are not unique; see [6] for a different definition. 
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We assume for y a Butcher series 
hr 

Y = a D(t)F(t)(yo) = B(4D, yo), 
tET 

where T is the set of all monotonically labelled trees, r is the order of the tree, 
and 

?? (t) = ((Di(t), ***,2m+2 (t)) 

is unknown. F(t) is the differential associated with tree t such that 

F(T) =f, T=*, 

and 
F(t) = em * (F(tl) 5 F (t2),.., F (Q)) 

if t = [t1, t2, ..., tm] is the rooted tree such that if its root is removed, the 
remaining subtrees are just t1, t2, ..., t,. Here, T = is the tree of order 
1, and the composition F(t) = fm * (F(tl), F(t9 , ..., F(tQ)) means that the 
differential fm acts on each of the differentials F(tI), F(t9, ... , F(tQ). The 
Butcher series for yo is given by B(p, yo), where 

f (-l)r, i<m, 

pit 1 > M 1i m+lt=0, 

0, otherwise. 

Forming the Butcher series for the numerical method (0.2) and applying the 
composition theorem of Hairer and Wanner [2] gives 

B('D, yo) = A(0)B(p, yo) +A (1)B(4', yo). 

Comparing terms gives 

??(t) = A 0~p(t) + A 
1 

(t) 

For order of accuracy p, the last component of this equation must agree with 
the Butcher series of the Taylor polynomial for yn+, up to terms of order p. 
Therefore, 

(4(t))2m+2 = I { rE< p 

Application of the Kastlunger Theorem [2] to ??'(t) gives 

??'(t) = r(FD(tl) * FD(t2) * e *D(Q) 

and thus the order conditions. These are given in Table 1 for order of accuracy 
up to p = 4. 

The relationship between the number of degrees of freedom and the order 
attainable for both one- and two-step Runge-Kutta is summarized in Table 2. 
The maximal order of the five-stage, two-step scheme has not been calculated 
but we conjecture that it is five. For order six, 37 conditions must be satisfied by 
21 coefficients, and our experience with these schemes suggests that this is not 
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TABLE 1 
Order conditions for two-step Runge-Kutta 

t r Differential Order Conditions 

I 1 f(t) I=-fi+(v T+W ) 

2 f'*f 1 + 2(VTb + wTc) 

V 3 f* (f,) 1- + 3(V Tb2 + W TC2) 

I= -3+ 3v 1 

+ 6((v + WT)A1CV TA11) 

* 4 f"* (1(f'f'f) 1 + 4(v Tb3 +W T3) 

1= /+4v T(b+2(b.A b)) 

4 ftl 0(f, V )) 

+ 4w T(2c * A c) 

Y 4 f'* (f " (f, f)) 1= fi + 4(-vT 1 + 3vT Alb + 3w AIc) 

1= /-4v 1 + 12v c 

T T 2 T 
+ 24(v +w )AI c-24v AIc 

1=(1, 1, 1)T E Rm, b = (b1, b2, ..., bm) bi = Ci.-1, c = (cl, ,CM)T 
i-i 

ci = ai (bk)i = bk, and b * c is componentwise multiplication. 
i=1 

possible. Except with four stages, one order of accuracy higher, using two steps 
rather than one, is obtained. In this case there are more remaining degrees of 
freedom that can be used in a variety of ways. Renaut [14] exploited the degrees 
of freedom available to design error control schemes. Byrne and Lambert [1] 
minimized the truncation error. 

TABLE 2 
Comparison of order for one- and two-step schemes 

Number of Number of Maximal Degrees of 
stages steps Order Freedom 

1 2 2 3 
2 1 2 3 
2 2 3 6 
3 1 3 6 
3 2 4 10 
4 1 4 10 
4 2 4 15 
5 1 4 15 

_ _ _ _2 _ _ _1 
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2. STABILITY AND STABILITY INTERVALS 

The solution of the linear test equation y' = Ay, A E C, by (0.2) yields the 
recurrence relation 

Yn+= S(Z)yn + P(Z)yn-1, 

where z = hA and S(z) and P(z) are polynomials of degree m, S(z) = 

EMoS Zi' P(Z) = Emopiz'i. In terms of the variables in (0.2), 
m 

s0=1-/J, s1=Ew1, 
i==1 

m k1-l k11-l 

SiYE YE YE aklkak2k .akkWk, 

ki=ik=i-1 k=l 

po=fi, PI= Vi , 
i=l 

m k1-1 k11-1 

Pi Ekj2 E ~3 
. 

E a. .2a/3 *ak_, kVk 

k1=ik2=i-1 k,=1 

The characteristic equation of (0.2), 

(2.2) a2 - S(z)a-P(z)=0, =h;1 

has roots a1', a2 which determine the stability of the method. The stability 
region S is defined by 

S={zeC: roots a, a2 of (2.2) satisfy la1 , la 

and a, 1-a2 if la, I= a2l = 1 

The numerical solution of a partial differential equation by (0.2) is stable 
provided that all points in the spectrum of the infinite Toeplitz operator of 
the semidiscretization multiplied by h lie inside S. Since the values of the 
spectrum are proportional to 1/Ax, where Ax is the grid size in the spatial 
discretization, the numerical solution is stable provided that the spectral curve 
multiplied by h/Ax lies inside S. In order to use large time steps, h, as large 
a multiple as possible of the spectral curve must be inside S. Thus, because ,u 
is proportional to h/Ax, we need to find the largest possible Courant number 
,u for which the numerical method is stable. 

Suppose the linear hyperbolic test equation 

(2.3) ut = u, X u = u(x, t) 

is solved. A three-point central difference approximation is 

du. 1 

d=t (Uj+ - Uj_0) 
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4.50 - 
Spectral curve A 

- - Spectral curve B 
4.00 - --- Eigenvalue curve A 

-- --Eigenvalue curve B 
3.50 -------- Spectral curve C 

3.00 

/ \ 

2.50 / 

2.00 / 

1.50 / 

1.00 I 

0.50 L 

-6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 

FIGURE 1 
Comparison of spectral and eigenvalue curves 

where u1 approximates u(xj, t). The spectrum of this approximation is the 
curve i sin 6, 0E [-7r/2, 7r/2], which is just the interval [-i, i] of the imagi- 
nary axis. The five-point approximation has spectrum with a larger interval on 
the imaginary axis. For efficient integration of these methods, methods with 
stability region enclosing a maximal interval on the imaginary axis are desired. 
One-step Runge-Kutta methods with this property were first analyzed by van 
der Houwen [4]. 

The construction of first-order one-step Runge-Kutta methods which are opti- 
mal in the sense of having a stability region enclosing a maximum interval along 
the imaginary axis can be posed as a minimax problem. The maximum inter- 
val of stability along the imaginary axis, flimag' is bounded by 2[m/2]. This 
bound was refined by Pike and Roe [13] to give flimag < m - 1. Runge-Kutta 
methods with an odd number of stages, that attain this bound, are also second- 

order accurate. Third-order methods satisfy flimag = (m- 1)2+1 and are 
fourth-order if the number of stages is even; see Kinmark and Gray [10]. Such 
results for two-step schemes are not known. Jeltsch and Nevanlinna [8] proved 
that flimag = m sin(7r/2m) for order-one two-step schemes and an odd number 
of stages. We demonstrate later that a larger value of flimag can be found by 
relaxing the assumptions of their theorem. 
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Large intervals of stability on the imaginary axis are, however, not always 
desired. If (2.3) is solved using upwinding: 

du. j+ - 

(2.4) C: dt = AAx 

the spectral curve is a (cos 0 - 1 + i sin 0), which is shown as curve C in Figure 
1. This lies in the left-half complex plane and therefore the stability region 
must enclose as large a multiple as possible of this curve. Spectral curves for 
the discretizations 

(2.5) A: -du + = 1 (2n! - 2uj+ +uj+l dt dt Ax 2P 21! 

duj 8du. 5du 2 
(2.6) B: ]-1 - ____ = (Uj - uj+-) dt dt dt A 
also lie in C, as shown in Figure 1. The schemes given by A and B were 
chosen as the only two examples of implicit schemes which have order three, 
are stable, and are based on a Pade approximation. -In fact, the results of Iserles 
and Williamson [5] demonstrate that there are only three possibilities for such 
maximally accurate schemes of order three. The third scheme is explicit and 
also gives a curve on C . Obviously, many other discretizations also give curves 
in C , and thus in each case the stability region must be optimized with respect 
to that curve. There are no solutions of this problem in the literature for either 
one- or two-step Runge-Kutta methods. Observe that in examples (2.4), (2.5), 
and (2.6) the spectrum of the infinite Toeplitz operator is not the same as the 
spectrum of the finite-dimensional operator. The two are compared in Figure 
1 for discretizations A and B. The discrepancy occurs because the underlying 
Toeplitz operator is not normal, and thus the eigenvalues of the Jacobian matrix 
do not tend to the spectrum of -the infinite-dimensional form. 

We seek regions in C in which the roots of the characteristic equation (2.2) 
have modulus less than one and attain modulus one on its boundary. By the 
maximum modulus principle we only need to determine the roots of the charac- 
teristic equation along the boundary of the region. To decide if a root satisfies 
stability, the Cohn-Schur criteria may be used. For equation (2.2) they take the 
form 

(2.7) (i) IP(z)I < 1, 

(ii) IP(z)I - 11?< IS(z)P(z)+S(z)I. 

With strict inequality the roots of the quadratic equation (2.2) lie inside the 
unit circle [12]. 

These criteria are expressed in terms of the polynomial coefficients {si, Pi }. 
Therefore, it is convenient to express the order conditions of Table 1 in terms of 
{si, pi} . Note that the method is of order p only if one root of the quadratic 
equation (2.2), the principal root, is an approximation of order p to the expo- 
nential: 

P+1 p+2 
a,(z)-ez = cz +c(lzI ) 
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This gives 

P0 + so = 1 order 1, 

(2.8) P1 + Si + so = 2 order 2, 

P2 +s2 +sI +s0/2 = 2, 

p3+s3 +s2+S1/2+so/6 = 4/3 order 3. 

Up to order two, these conditions are sufficient, but for p = 3 the coefficient 
of the f2 f differential, 

(2.9) (P2 + s2)a + P3+ 3 (( 2 + j) - a(y + 3J)) = O. 

is also required. For convenience we have set a = a21, y = a3,and c5 -a32. 
The solution of these equations for the m = 2 scheme completely defines 

the coefficients {s2 P2} in terms of po: 

(2.10) s0= 1 -p0, 1 2 l 2 12 

PIa= 2 l P2 =-S2 

The stability region can thus only be optimized with respect to the variable pov 
which is constrained by zero stability to satisfy -1 < po < 1 . 

Theorem. The maximal region of stability attainable on the imaginary axis by 
a two-step, two-stage, order-three scheme is given by flimag = 1. The schemes 
achieving this bound have 

p(Z)=I_ 2 _2 z2 and S(z)= 4 +5z+ 2 z2 

Proof. Set z = iy in the Cohn-Schur criteria and substitute the equations (2. 10) 
in (2.7). This yields 

(i) 1 (5_ -PO)2Yl + 12 ( 1 + po)(3 + po)y2 _ ( 1 _ Po2) < ? 
24 (1- 2t) 

(ii) y2 < 24 (5 -PO) 

Here, condition (ii) implies (i) when 1pOp < 1 . The maximum value of y that 
satisfies (ii) is y = 1 and occurs for po = I 

. Therefore, flimag = 1 P(z) and 
S(z) follow by substitution of po = 5 in (2.10). 0 

In general, the equations (2.8) determine the number of degrees of free- 
dom available for stability. Equation (2.9) is just an extra condition on the 
coefficients a, y, and c5. Therefore, the determination of maximal Courant 
numbers is a nonlinear programming problem given by the Cohn-#Schur crite- 
ria subject to the linear order conditions (2.8) and the zero stability condition 
-1 < po < 1 . Note also that the truncation error is normalized by the term 

EmI (vi + wi), which tends to zero as po tends to -1. Therefore, po near 
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-1 is not preferred. The optimization procedure described next is unlike that 
adopted by Lawson [1 1] for finding optimal one-step fifth-order schemes with 
six stages. 

3. OPTIMAL STABILITY REGIONS 

Here we present a method for determining optimal stability regions for a 
given number of stages and order of accuracy for one- or two-step Runge-Kutta 
methods. The same technique could be used for Runge-Kutta methods with 
more steps. To do this, the Cohn-Schur criteria for higher-order polynomials 
would lead to more nonlinear constraints. 

Our aim is to find coefficients of a method which has a stability region en- 
closing a given domain Q2 in C . In the cases considered here, Q2 is either 
a wedge bounded by the arc of a circle, or a wedge bounded by a spectral 
curve. The domain Q2 can be uniformly scaled by multiplying each z E C by 
a constant, ji. We wish to maximize ji so that Q2 still lies in S, but only 
just lies in S. The method for which ju is largest is optimal. Because of the 
maximum principle, we only need to check stability along the boundary of the 
domain. Therefore, we discretize the boundary of Q2 and label the points zj, 
1 < j < N. At each point, stability is required, and therefore the Cohn-Schur 
criteria must be satisfied. Therefore, from equations (2.7) we get two nonlin- 
ear constraints at each point, which gives a total of 2N nonlinear constraints. 
Since stability can be determined completely from the coefficients of the char- 
acteristic polynomial, we work with the polynomial coefficients rather than the 
{aij, vi, wi} of the method. The latter can be calculated from the polynomial 
coefficients {pi, Si, 0 < i < m}. Depending on the order, the polynomial co- 
efficients are further linearly constrained by equations (2.8). Zero stability also 
imposes -1 < p0 < 1 . This leaves M free variables, where M < 2(m + 1) . 
Then we get an additional variable which is the scaling factor jU. The size of 
Q2 depends on ju, and thus the zj also depend on ji. In summary, we have 
the following optimization problem: 

maximize ji 

subject to 

- 1 K pO 1 , 

IP(zj)I < 1, 1 < j<N, 
2 

IS(z1)P(zj) + S(zj)I < ? 1 - iP(zj)l i, 1 < j < N. 

P(zj) and S(zj) are functions of X = (u, XI XM) with {Xi i 1 < i < 
M} C {Pi, si | 0 < i < m}. 

The above problem was solved for the second- and third-order, two- and 
three-stage, two-step schemes. For comparison, some optimal one-step schemes 
were also found, but the optimization was much simpler. Details of the so- 
lution process are given by Renaut [14]. In many cases it was difficult to get 
convergence to a solution with a small residual, even using double precision. 
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TABLE 3 
Runge-Kutta schemes and their degrees offreedom for optimization 

Number of Number of Order Free Variables 1 
steps stages P 

2 2 2 POPIP2 j 
2 2 3 Po 9 
2 3 2 POPIP2P3s3 j 
2 3 3 PoPIP2p3 j 

1 ~~ ~~2 2 - 

1 ~ ~ ~~3 2 r3 9 
1 ~ ~ ~~4 2 r3 r4 ,u 

1 3 3 
1 4 3 r4 i 
1 5 3 r4r, 9 

TABLE 4 
Maximal radii of wedges 

Stages Steps Order 49.I' 60* 45 90g I 
2 1 2 1.74 1.99 0 
3 1 2 3.02 2.82 2.00 
4 1 2 4.36 4.99 not 2V'2 
3 1 3 2.15 2.52 calculated 3 
4 1 3 3.13 3.09 2v'2 
5 1 3 4.31 4.94 V13 

2 2 2 2.97 3.39 2.75 1.47 1.98 
3 2 2 4.91 5.09 5.92 2.29 2.93 
2 2 3 1.85 1.99 2.06 1.00 1.00 
3 2 3 2.63 2.57 3.30 2.21 2.84 

TABLE 5 
Maximal radii of wedges scaled by number of stages 

Stages Steps Order 49.1 45 | 90 I 
2 1 2 .870 .995 0 
3 1 2 1.007 .940 .667 
4 1 2 1.090 1.248 not .707 
3 1 3 .717 .840 calculated .577 
4 1 3 .783 .773 .707 
5 1 3 .862 .988 .775 
2 2 2 1.485 1.695 1.375 .735 .990 
3 2 2 1.637 1.697 1.973 .763 .977 
2 2 3 .925 .995 1.030 .500 .500 
3 2 3 .877 .857 1 .1InO .737 .947 
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TABLE 6 
Coefficients of optimal schemes 

Region Imaginary Wedge Wedge 
Q axis angle 450 angle 900 

scheme coefficient 
m =2 P0 -.950 -.8 .178656 
p= 2 P1 .025 -.827186 .321257 

P2 .006 -.207100 .005268 
m =2 P0 .2 -.8 .2 
p=3 

P0 .9 -.949860 .132890 
m = 3 P1 -.039 -.961077 .186786 
p 2 p2 -.009 -.218305 .144745 

P3 -.001 -.018807 .035683 
S3 .295 .019814 .179877 
P0 1.00 .73 .378628 

m =3 P1 0 .59 .430854 
p= 3 P2 0 .14 .246454 

__P_ 0 .018 .078024 

Many of the solutions apparently converged to a p0 near to -1. In these cases 
we imposed an additional constraint that p0 be greater than some number, for 
example, -.9. The optimal schemes then converged to this lower bound for 
p0. In each case, a solution was found for a small value of N, such as N = 5. 
We then increased N and found a new solution with the old solution as the 
starting value. The process was continued until the solutions from successive 
problems were the same to the accuracy allowable by the subroutine. Usually 
only a few iterations were needed to get convergence. We used a variety of NAG 
and Harwell library routines but obtained best results with the NAG routine 
E04UBF, for which the results are given here. The schemes investigated are 
summarized in Table 3. Note that the characteristic polynomial of the one-step 
Runge-Kutta schemes is denoted by R(z) . Observe that we have not calculated 
results for all the one-step schemes, because differences between the one-step 
and two-step schemes are adequately shown by the other results. 

We used five different domains Q in the calculations. One of these was the 
imaginary axis, the others were wedge shaped regions subtending an angle 2a 
at the origin and bounded by a smooth curve. For wedges with a = 450 and 
ak = 900, the wedge was bounded by the arc of a circle. The other two wedges 
were bounded by the spectral curves of the Jacobians of the semidiscretizations 
A and B, equations (2.5) and (2.6). These subtend angles 600 and 49.10 at 
the origin, respectively. In Table 4 we give the maximum radius of the wedge 
obtained for each scheme. These values, however, do not allow fair comparison, 
as there is more work in a three-stage scheme than in a two-stage scheme. Thus, 
Table 5 is the same as Table 4 with the radii scaled by the number of stages. 

Observe that the wedge with angle 600 apparently allows larger Courant num- 
bers than the wedge with angle 49.10 . This is not a problem, as the bounding 
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Stability regions for k = 2, m = 2, p = 3 schemes 
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Stability regions for k = 2, m = 2, p = 2 schemes 
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Stability regions for k = 2, m = 3, p = 3 schemes 
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Stability regions for k = 2, m = 3, p = 2 schemes 
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curves are different in each case, and clearly it is these that have dictated the op- 
timization. Indeed, the other results show that the smaller wedges allow larger 
maximal radii. We conclude that the optimization procedure is basically suc- 
cessful. Currently, we are communicating with Nick Gould of Harwell about 
the use of new software, not yet publicly available, which may improve the re- 
sults and simplify the optimization procedure. Examples of the stability regions 
are given in Figures 2a-2d. Note that we do not use the same scale on both 
axes but prefer to compare regions for a chosen method. When both axes have 
the correct scale, the wedges fit as required. 

As already noted in the previous section, there is a two-step, three-stage 
scheme of order of accuracy p = 3, that has flimag = 2.84. This appears, 
at first glance, to contradict the result of Jeltsch and Nevanlinna [8]. Their 
scheme is given by P(z) = 1, S(z) = 2z + 8 z3 and has ,6imag = 1.5 because 27 ia 
there is a double root at z = 1.5i. Perturbing S(z) slightly gives a third-order 
scheme, with 

S(z) = 2z + l z3 

and fiimag = 2.8473. The root locus of z3 + 6z - 6isint =0 has a branch 

point at z = ix/ for t = cos (1/3) and therefore the scheme with S(z) = 

2z + z3/3 does not satisfy Property C as defined by Jeltsch and Nevanlinna 
[9]. Their theory, however, requires that Property C is satisfied. Therefore, 
our result shows that there are schemes which fall outside the theory of Jeltsch 
and Nevanlinna [9] but still may be useful. For the Jeltsch and Nevanlinna 
scheme and the scheme which we propose, the stability region is just an interval 
along the imaginary axis. 

In conclusion, observe that the two-step schemes are generally more efficient 
than the one-step schemes. An increase in order reduces efficiency, as would 
be expected. In most cases there is still some freedom left over. Renaut [14] 
used this freedom to design efficient algorithms for error control. Numerical 
experiments are currently in progress and will be reported later. 
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